相对于单例数据库的查询操作,分布式数据查询会有很多技术难题。
本文记录 Mysql 分库分表 和 Elasticsearch Join 查询的实现思路,学习分布式场景数据处理的设计思路。
Mysql 分库分表 Join 查询场景
分库分表场景下,查询语句如何分发,数据如何组织。相较于NoSQL 数据库,Mysql 在SQL 规范的范围内,相对比较容易适配分布式场景。
基于 sharding-jdbc 中间件的方案,了解整个设计思路。
sharding-jdbc
-
sharding-jdbc 代理了原始的 datasource, 实现 jdbc 规范来完成分库分表的分发和组装,应用层无感知。
-
执行流程:SQL解析 => 执行器优化 => SQL路由 => SQL改写 => SQL执行 => 结果归并
io.shardingsphere.core.executor.ExecutorEngine#execute
-
Join 语句的解析,决定了要分发 SQL 到哪些实例节点上。对应SQL路由。
-
SQL 改写就是要把原始(逻辑)表名,改为实际分片的表名。
-
复杂情况下,Join 查询分发的最多执行的次数 = 数据库实例 × 表A分片数 × 表B分片数
Code Insight
示例代码工程:git@github.com:cluoHeadon/sharding-jdbc-demo.git
/**
* 执行查询 SQL 切入点,从这里可以完整 debug 执行流程
* @see ShardingPreparedStatement#execute()
* @see ParsingSQLRouter#route(String, List, SQLStatement) Join 查询实际涉及哪些表,就是在路由规则里匹配得出来的。
*/
public boolean execute() throws SQLException {
try {
// 根据参数(决定分片)和具体的SQL 来匹配相关的实际 Table。
Collection<PreparedStatementUnit> preparedStatementUnits = route();
// 使用线程池,分发执行和结果归并。
return new PreparedStatementExecutor(getConnection().getShardingContext().getExecutorEngine(), routeResult.getSqlStatement().getType(), preparedStatementUnits).execute();
} finally {
JDBCShardingRefreshHandler.build(routeResult, connection).execute();
clearBatch();
}
}
SQL 路由策略
启用 sql 打印,直观看到实际分发执行的 SQL
# 打印的代码,就是在上述route 得出 ExecutionUnits 后,打印的
sharding.jdbc.config.sharding.props.sql.show=true
sharding-jdbc 根据不同的SQL 语句,会有不同的路由策略。我们关注的 Join 查询,实际相关就是以下两种策略。
-
StandardRoutingEngine binding-tables 模式
-
ComplexRoutingEngine 最复杂的情况,笛卡尔组合关联关系。
-- 参数不明,不能定位分片的情况
select * from order o inner join order_item oi on o.order_id = oi.order_id
-- 路由结果
-- Actual SQL: db1 ::: select * from order_1 o inner join order_item_1 oi on o.order_id = oi.order_id
-- Actual SQL: db1 ::: select * from order_1 o inner join order_item_0 oi on o.order_id = oi.order_id
-- Actual SQL: db1 ::: select * from order_0 o inner join order_item_1 oi on o.order_id = oi.order_id
-- Actual SQL: db1 ::: select * from order_0 o inner join order_item_0 oi on o.order_id = oi.order_id
-- Actual SQL: db0 ::: select * from order_1 o inner join order_item_1 oi on o.order_id = oi.order_id
-- Actual SQL: db0 ::: select * from order_1 o inner join order_item_0 oi on o.order_id = oi.order_id
-- Actual SQL: db0 ::: select * from order_0 o inner join order_item_1 oi on o.order_id = oi.order_id
-- Actual SQL: db0 ::: select * from order_0 o inner join order_item_0 oi on o.order_id = oi.order_id
Elasticsearch Join 查询场景
首先,对于 NoSQL 数据库,要求 Join 查询,可以考虑是不是使用场景和用法有问题。
然后,不可避免的,有些场景需要这个功能。Join 查询的实现更贴近SQL 引擎。
基于 elasticsearch-sql 组件的方案,了解大概的解决思路。
elasticsearch-sql
-
这是个elasticsearch 插件,通过提供http 服务实现类 SQL 查询的功能,高版本的elasticsearch 已经具备该功能
-
因为 elasticsearch 没有 Join 查询的特性,所以实现 SQL Join 功能,需要提供更加底层的功能,涉及到 Join 算法。
Code Insight
源码地址:git@github.com:NLPchina/elasticsearch-sql.git
/**
* Execute the ActionRequest and returns the REST response using the channel.
* @see ElasticDefaultRestExecutor#execute
* @see ESJoinQueryActionFactory#createJoinAction Join 算法选择
*/
@Override
public void execute(Client client, Map<String, String> params, QueryAction queryAction, RestChannel channel) throws Exception{
// sql parse
SqlElasticRequestBuilder requestBuilder = queryAction.explain();
// join 查询
if(requestBuilder instanceof JoinRequestBuilder){
// join 算法选择。包括:HashJoinElasticExecutor、NestedLoopsElasticExecutor
// 如果关联条件为等值(Condition.OPEAR.EQ),则使用 HashJoinElasticExecutor
ElasticJoinExecutor executor = ElasticJoinExecutor.createJoinExecutor(client,requestBuilder);
executor.run();
executor.sendResponse(channel);
}
// 其他类型查询 ...
}
Join 算法
-
三种 Join 算法:Nested Loop Join,Hash Join、 Merge Join
-
MySQL 只支持 NLJ 或其变种,8.0.18 版本后支持 Hash Join
-
NLJ 相当于两个嵌套循环,用第一张表做 Outter Loop,第二张表做 Inner Loop,Outter Loop 的每一条记录跟 Inner Loop 的记录作比较,最终符合条件的就将该数据记录。
-
Hash Join 分为两个阶段;
build
构建阶段和probe
探测阶段。 -
可以使用Explain 查看使用哪种 Join 算法。
EXPLAIN FORMAT=JSON
SELECT * FROM
sale_line_info u
JOIN sale_line_manager o ON u.sale_line_code = o.sale_line_code;
参考
总结
通过运行原理分析,对于运行流程有了清晰和深入的认知。
对于中间件的优化更加有目的性,使用上会更加谨慎和小心。
明确的筛选条件,更小的筛选范围,limit 取值数据,都可以减少计算陈本,提高性能。